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Much of what we know about the marginal effect of pollution on infant mortality is derived from
developed country data. However, given the lower levels of air pollution in developed countries,
these estimates may not be externally valid to the developing country context if there is a non-linear
dose relationship between pollution and mortality or if the costs of avoidance behaviour differ
considerably between the two contexts. In this article, we estimate the relationship between pollution
and infant mortality using data from Mexico. Our estimates for PM10 tend to be similar (or even
smaller) than the US estimates, while our findings on CO tend to be larger than those derived from
the US context.

Pollution is a grave concern in much of the developing world, with levels that are often
orders of magnitude higher than in developed countries. Using comparable data,
Greenstone and Hanna (2011) document air pollution levels that are five to seven
times higher in India and China than in the US. This may translate into many lost lives:
the OECD estimates that almost 1.5 million individuals die from exposure to
particulates each year, many more than who die from malaria or unclean water. With
pollution levels predicted to rise, the OECD claims that this figure may exceed
3.5 million people per year by 2050, with most of these deaths occurring in rapidly
industrialising countries, such as India and China (OECD, 2012).

In contrast with these concerns, Mexico, another rapidly industrialising country, has
experienced important gains in air quality during the last 20 years. Between 1997 and
2006, an array of policies aimed at cutting down pollution in Mexico City resulted in
pollutant concentration reductions of between 23% (ozone) and 48% (carbon
monoxide). The policies implemented in this period include centralised fuel
improvement, driving bans, more stringent vehicle and industry emission standards
among others.1 During the same period, the infant mortality rate dropped by 30% and
the neonatal mortality rate dropped by 20%. Whether or not all – or part of – the time
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series relationship between pollution and infant mortality is causal is still an open
question.

The challenges with uncovering the causal effect of air pollution on health are well
known in the economics and epidemiological literature. One of the biggest concerns is
that of attributing to pollution the effect of other factors that may be correlated with
health, such as weather, socio-economic status and changes in economic conditions.
Another important challenge is that of attributing to pollution deaths of individuals
who would have died within a few days due to other causes (harvesting). Recent studies
within economics have overcome some of these challenges using rich data from the US
and quasi-experimental approaches that are arguably robust to confounding factors
and harvesting. These methodologies fit generally in one of two groups: fixed effects
(Currie and Neidell, 2005) and instrumental variables (Chay and Greenstone, 2003;
Knittel et al., 2011).

Many of the existing studies for the developing world are in the epidemiological
literature. These studies have typically relied on time series variation in air pollution
while controlling for temperature (Borja-Aburto et al., 1998; Loomis et al., 1999) and
sometimes controlling for time-fixed unobservable socio-economic or sub-regional
characteristics (Borja-Aburto et al., 1997; O’Neill et al., 2004). These empirical
strategies might be subject to omitted variable bias from unobserved shocks that can
affect both pollution and mortality and are very sensitive to measurement error. In
addition, none of these studies has examined the effect of carbon monoxide on infant
health. While one can in principle address omitted variable bias using either
instrumental variables or fixed effects, these techniques pose additional challenges
in developing countries. For example, a common strategy to find a valid instrument is
to use a policy or regulation that can arguably generate exogenous variation in
pollution. However, despite the fact that the regulations in developing countries often
look similar to those in the US, they are often riddled with implementation and
enforcement problems, resulting in a weak first stage.2 The remaining approach, fixed
effects, effectively controls for time-invariant unobserved differences across locations
and overall trends (Currie and Neidell, 2005). This type of empirical model is
challenging when using developing country data, as the measurement error that may
arise from using sparser pollution data may be exacerbated by the inclusion of fixed
effects.3

Studies in the economic literature that aim to have a more causal interpretation are
scarce and often lack actual pollution data, which makes it complicated to estimate the
magnitude of the effect of pollution concentrations on health ( Jayachandran, 2009;
Gutierrez, 2010).4 This comes from the fact that the availability and quality of the air

2 For example, Greenstone and Hanna (2011) experience this problem when using environmental
regulations in India as an instrument for pollution and Davis (2010) finds no effect of driving restrictions on
air pollution.

3 As Currie and Neidell (2005) discuss, measurement error has also been noted in the US context as well.
Schlenker and Walker (2011) and Knittel et al. (2011) find larger impacts of pollution on health when using
an instrumental variables strategy as compared to fixed effects methods using US data, which both claim is
consistent with classical measurement error being exacerbated with the fixed effects methodology.

4 Other studies include Greenstone and Hanna (2011) who estimate the effect of mandated catalytic
converters on infant mortality rates in India, but have a noisy estimate of the policy impact due to limited
data; and Tanaka (2015), who measures the effect of more stringent environmental regulation in China.
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pollution and mortality data are often more limited in developing countries. Quite
frequently, disaggregated data on infant births and deaths are not accurately recorded
or computerised. Even when the data are available, the validity of the data may be
questionable as there is substantial selection as to which births and deaths are
registered. Moreover, there are fewer stations systematically measuring pollution levels
in developing countries, and so there is potentially less variation in pollution to exploit.
From this standpoint, relying on estimates from developed countries to estimate the
costs of air pollution in developing countries on health might be attractive option.

There are, however, two important reasons why estimates from developed countries
may have limited external validity to the developing country context. First, they may be
limited if there is a non-linear dose–response relationship between pollution and
infant mortality. If we expect, for example that marginal changes in pollution are more
damaging at higher levels of air pollution, using developed country estimates would
cause us to grossly underestimate the effect in many developing countries. On the
other hand, if there is an inflection point which pollution needs to fall beneath before
health gains can be realised, using developed country estimates could alternatively lead
us to overestimate the effect.

Second, the effect of pollution on health may be highly dependent on behaviour
(Zivin and Neidell, 2009; Moretti and Neidell, 2011; Deschenes et al., 2011). Avoidance
behaviour may be costlier in the developing world, given less access to health care and
lower quality housing stock, which would imply that a marginal decrease in pollution
may have a larger overall health impact in the developing world. Alternatively, the
effect could be smaller if, for example individuals have permanently adapted to bad
pollution by keeping infants indoors or wearing breathing masks regularly.5 Given
these two potential factors, applying estimates of the marginal effect of pollution that
are derived from the US to developing countries may be highly misleading for policy.

In this study, we aim to address these problems and estimate the impact of pollution
on infant mortality in a developing country context. To do so, we construct weekly,
municipality-level measures of pollution and mortality for 48 municipalities across
Mexico City between the years 1997 and 2006. Mexico City is a highly relevant context
in which to study this relationship. On average, it experiences both the high levels of
pollution and mortality that are common in many developing countries. However,
given the high variance in pollution levels, the range of pollution also encompasses a
range similar to that observed in the US. These two facts will allow us to estimate the
marginal effect of pollution at a range that is typical for developing countries and then
to compare this estimate to the marginal effect at the ranges used in the previous
estimates for the US.

We first employ a fixed effects technique, controlling for time-invariant character-
istics of municipalities, bimonthly 9 municipality fixed effects, weather and munici-
pality-specific week trends. Using this method, we find a small effect of pollution on
mortality. However, as we discuss below, even with fixed effects, there may be
remaining endogeneity concerns. Moreover, despite access to very high quality
pollution measures, station coverage is sparse: depending on the pollutant and year,

5 As higher pollution is more visible, avoidance behaviour may be more likely since the costs of learning
about pollution levels may be lower.
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our pollution measures are derived from between 10 and 26 stations. Given that fixed
effects models are particularly sensitive to classical measurement error, our estimates
may be severely biased downward.

Instead, we exploit the meteorological phenomenon of thermal inversions. An
inversion occurs when a mass of hot air gets caught above a mass of cold air, trapping
pollutants. Conditional on temperature, inversions themselves do not represent a
health risk per se other than the accumulation of pollutants. As such, we can use the
number of inversions in a given week to instrument for pollution levels that week. We
find that each additional inversion leads to a 5.7% increase in particulate matter
measuring 10 lm or less (PM10) and a 6.3% increase in carbon monoxide (CO),
conditional on municipality fixed effects, bimonthly 9 municipality fixed effects,
municipality-specific time trends, polynomials in temperature and weather controls.

With the instrumental variables strategy, we find robust evidence of pollution on
infant mortality. Our estimates imply that 1 lg/m3 increase in 24-hour PM10 results in
0.23 weekly infant deaths per 100,000 births. Similarly, 1 ppb increase in the 8-hour
maximum for CO results in 0.0046 weekly deaths per 100,000 births.6 We find no
significant effect on neonatal (children 28 days and younger) deaths overall. As a test
of the causal pathway, we then separate deaths into those that are likely to be pollution
related (i.e. respiratory and cardiovascular disease) versus those that are less likely to be
pollution related (i.e. digestive, congenital, accidents, homicides etc.). We find
statistically and policy significant effects of pollution on both neonatal and infant
deaths from respiratory and cardiovascular disease. As we would expect if we had
indeed isolated the effect of pollution from other factors (i.e. income, health
preferences), we find no effect of pollution on deaths from other causes.

Finally, we compare our estimates to those derived in the US setting. Specifically, we
compare our estimates to Chay andGreenstone (2003), Currie andNeidell (2005), Currie
et al. (2009) and Knittel et al. (2011).7 We find larger marginal effects of CO on infant
mortality than Currie andNeidell and Currie et al.; we also find larger point estimates that
Knittel et al., but they do not observe a significant effect of CO on infant mortality. For
PM10, our results are near identical to Chay and Greenstone’s results, despite the fact that
the mean level of pollution in their setting is roughly half of that in Mexico City.

The article proceeds as follows. In Section 1, we describe our empirical methods and
data, while we provide our findings in Section 2. Section 3 provides a discussion of our
estimates with those from the US context. Section 4 concludes.

1. Empirical Method, Data and Summary Statistics

In this Section, we first discuss some of the existing empirical methods for estimating
the relationship between air pollution and infant mortality. We then detail our
empirical strategy in subsection 1.2. Finally, we describe the data that we collected for
this project.

6 As we illustrate below, these results are robust to different definitions of mortality, different ways to
control for seasonality, the inclusion of outliers and different weather and temperature controls.

7 Note that other papers in the US context explore the effect of pollution on child and infant health
(Lleras-Muney, 2010). We only include papers that study comparable infant mortality outcomes.
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1.1. Existing Empirical Methodologies

Our objective is to estimate the relationship between pollution (Pmw) in a municipality
(m) in a given week (w) and mortality per 100,000 live births (Ymw), or the parameter b1:

Ymw ¼ b0 þ b1Pmw þ emw (1)

where ɛmw captures all unobserved determinants of mortality. There are many reasons
for believing the identification assumption, E(Pmw, ɛmw) = 0, does not hold in this case.
For example, areas with low levels of pollution may be richer and thus have lower levels
of mortality regardless of pollution. One method to solve the endogeneity problem
would be to estimate a fixed effects model:

Ymw ¼ b0 þ b1Pmw þ am þ rmj þ emw (2)

where am is a set of municipality fixed effects that control for permanent differences
across municipalities, such as time-invariant socio-economic characteristics. Similarly,
rmj is a set of bimonthly 9 municipality fixed effects, which control for common
factors in a given two month block that could affect both pollution levels and infant
mortality within a municipality.8 The fixed effects model represents a substantial
improvement over the standard cross-sectional regression. However, two concerns
remain. First, b1 may still be subject to bias if there are unobservable, time-varying
differences across municipalities. One way to account for this is to include munici-
pality-specific, linear time trends. However, this may not capture sharp or non-
monotonic changes in omitted pollution and infant mortality determinants, such as
road improvements that could result in fewer traffic jams and faster access for
emergency vehicles, or similarly, protests and demonstrations that results in disrupted
travel patterns. Second, classical measurement error in the pollution variable will bias
b̂1 downwards. Fixed effects estimators exacerbate measurement error, biasing b̂1
further towards zero. As compared to developed country settings, this may be
particularly problematic in developing countries, where pollution-monitoring stations
are sparse: for example, as we discuss below, we exploit data from 10 to 26 stations.

1.2. Exploiting Thermal Inversions in an Instrumental Variables Framework

We consider an instrumental variables strategy, which is likely to minimise bias from
both endogeneity and classical measurement error. Specifically, we exploit a meteo-
rological phenomenon: the existence of thermal inversions. Inversions are a common
occurrence in many cities around the world, ranging from Mumbai, Los Angeles,
San Paulo, Salt Lake City, Santiago, Vancouver, Prague etc.9 Air temperature in the

8 We experimented with different ways of modelling the fixed effects of time and location. One natural
way would be to include week fixed effects. However, to be consistent with the IV model below, we include the
bimonthly 9 municipality fixed effects (note that we drop the first month pair so that it is not co-linear with
municipality). The results (both in the fixed effects and IV) look almost identical if we just include bimonthly
fixed effects that are not interacted by municipality, so we decided to include the more restrictive set of fixed
effects. Note that the results are also robust to dropping the time trends and instead including a year fixed
effect.

9 The great smog of 1952 in the UK was caused by an inversion episode and was blamed for upwards of
12,000 deaths (Bell and Davis, 2001). This incident sparked greater interest in environmental regulation in
the UK.
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troposphere usually falls with altitude at about 6.5°C per 1,000 metres. However,
sometimes there is a mass of hot air on top of a mass of cold air; this is called a thermal
inversion. There are typically three reasons why this can occur: first, radiation
inversions are generated on clear nights when the ground and the air in touch with the
ground are cooled faster than higher air layers. The conditions for radiation inversions
are more frequent in the winter: under clear conditions, the earth’s infrared emissions
warm the higher layers of air. The cold ground temperatures cool causing the air that is
close to the ground to remain at a lower temperature than the air above. Second,
inversions by subsidence occur from vertical air movements when a layer of cold air
descends through a layer of hot air. Third, inversions can also be produced when layers
of air at different temperatures move horizontally and a layer of cold air develops
below a layer of hot air ( Jacobson, 2002).

The thermal inversion does not represent a health risk in itself but when it occurs in
conjunction with high levels of vehicle and industrial emissions, it may result in the
temporary accumulation of pollutants (Secretar�ıa del Medio Ambiente, 2005).
Specifically when emissions are released in the atmosphere, they rise and can get
trapped in the inversion (see Figure 1). As the sun’s energy equates the temperatures
of the cold and hot air masses, the ‘lid’ effect disappears (the inversion ‘pops’) and the
pollutants rise again. Inversions may have substantial effects on the concentration
levels of certain types of pollutants, particularly primary pollutants (CO, particulate
matter, NO, NOx and SOx, VOC) that may be released in the morning rush hours
when the inversions typically occur (Jacobson, 2002). Out of the primary pollutants, we
would, therefore, expect the largest effects for pollutants in which vehicles comprise a
large share of their emissions. For example, in Mexico City, 98% of CO emissions came
from vehicles in 1998, and therefore, we expect that a large share is released in the
morning commute hours. In contrast, we may expect weaker effects for pollutants like
particulate matter, in which 36% is released by vehicles, or SO2, in which only 21% is.

Inversions may have muted effects on secondary pollutants (O3, NO2, sulphuric
acid), which require time to mix from the primary pollutants, and therefore, may only
appear later in the day when it is likely that the inversions have already ‘popped’
(Jacobson, 2002). Moreover, inversions may inhibit the formation of these pollutants
in other ways. For example, in the particular case of O3, given that the chemical

Thermal inversion layer

(a) (b)

Fig. 1. Thermal Inversions. (a) Without Inversions, Pollutants Rise and Disburse. (b) Pollutants are
Trapped Beneath the Inversion Layer
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reactions that result in O3 require warmth and sunlight, the thick layers of pollution
associated with thermal inversions may interfere with O3 formation.10

We can, therefore, formally test whether inversions increase the concentrations of
different types of pollutants (3) and, if so, we can use the number of thermal inversions
in a given week (TIw) to instrument for pollution in (4):11

Pmw ¼ p0 þ p1TIw þ
X

p2mw þ hðWmwÞ þ am þ rmj þ lmw ; (3)

Ymw ¼ b0 þ b1Pmw þ
X

b2mw þ hðWmwÞ þ am þ rmj þ emw : (4)

Note that TIw varies at the week level and, therefore, week by year fixed effects are not
identified.12 We, therefore, control for municipality-specific week by year trends (w).
We also include municipality fixed effects (am) to control for time-invariant
characteristics across municipalities and bimonthly 9 municipality fixed effects (rmj)
to account for seasonal effects within each municipality.13

Importantly, we include a flexible set of controls for temperature and weather
conditions h(Wmw) that includes a fourth polynomial in mean temperature, a third
degree polynomial in minimum and maximum temperatures during the week, a
second degree polynomial in precipitation, cloud cover and humidity measures.
Controlling for temperature is important for the exclusion restriction to hold, since
inversions have a clear seasonal pattern and temperature may independently affect
infant mortality (Deschenes and Greenstone, 2011).14 Figure 2, panel (a) shows the
average number of thermal inversions per week for each month of the year (bars), as
well as the average temperatures for each month of the year (spikes) measured by the
right axis. As expected, given the conditions necessary for a radiation inversion, a large
share of the inversions occurs in the winter (November–March). However, inversions
also occur in months with relatively high temperatures (April, May and October),
which will allows us to disentangle the effects of temperature on infant mortality from
that of air pollution.

Note four additional specification details. First, all regressions are clustered at the
week level, which is the level of variation in our instrument. However, our estimates are
robust to alternative modelling assumptions for the error term; for example, our
reduced form results remain unchanged if we employ Conley standard errors to adjust
for geospatial correlation (online Appendix Table A1) and our IV results look nearly
identical if we cluster by both week and municipality (online Appendix Table A2).
Second, all regressions are weighted by the number of births in the respective cohort

10 Ozone Formation, EPA, http://www.epa.gov/oar/oaqps/gooduphigh/bad.html#6.
11 We have experimented with different ways to model the instrument. For example, interacting inversions

with municipality to allow for differential effects across municipality yields very similar results.
12 Note that as we exploit week-to-week variation within municipalities in this setting, sorting across

different municipalities due to differential pollution should not be a large concern. Moreover, Hanna and
Oliva (2015) show that sorting is not a large concern within Mexico City as very few households move across
census blocks, which are an even smaller geographic unit than municipalities.

13 As we illustrate below, our results are robust to different configurations of the control variables, such as
omitting controls for minimum and maximum temperatures during the week, omitting municipality-specific
time trends and including different types of seasonal effects.

14 In addition, including precipitation, cloud cover and humidity is also essential as it is possible that an
inversion can lead to a thunderstorm if moisture is trapped in the inversion.
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Fig. 2. Thermal Inversions, Temperatures and Infant Mortality, by Month of the Year. (a) Inversions and
Temperature. (b) Inversions and Infant Mortality

Notes. Panel (a) of this Figure compares the average number of inversions per week (bars) with
the monthly average temperature in Celsius (spikes) for each month of the year. Panel (b)
compares the average number of inversions per week (bars) against the infant mortality rate in
Mexico City (line) for each month of the year.
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(online Appendix Table A1 also shows that the results are not sensitive to these
weights). Third, we can also try to disentangle the effects of different pollutants on
infant health by taking advantage of the fact that the inversion effect may vary based on
the geographical features of a location, such as its altitude. Specifically, this will allow
us to create multiple instruments for the pollution variables.

Finally, we can also estimate models that control for mortality in the second largest
city of Mexico, Guadalajara, which shares similar weather patterns to Mexico City but
does not experience inversions. As Figure 3 illustrates, Guadalajara experiences similar
seasonal patterns in mortality to Mexico City. This provides us with an additional
method to control for seasonal patterns in mortality that may be due to weather or
seasons.

1.3. Data

We compiled a comprehensive data set on pollution measures, weather conditions and
mortality for Mexico City for the years 1997–2006. Each data source is described in
detail below.

4
Mortality in Guadalajara
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Fig. 3. Comparing Mexico City and Guadalajara
Notes. This Figure compares the average number of inversions per week (bars) against the infant
mortality rate in Mexico City (bold line) and the infant mortality rate in Guadalajara (dashed
line) for each month of the year. Guadalajara’s infant mortality rate appears to be lower and
nearly constant across the different months of the year, while Mexico’s City infant mortality
appears to have strong seasonal patterns that coincide with thermal inversion patterns. Thermal
inversions are absent in Guadalajara.
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1.3.1. Neonatal and infant mortality
We constructed the mortality measures from data from the Ministry of Health
(Secretar�ıa de Salud P�ublica). These data include mortality measures for both the
Mexico City Metropolitan Area (MCMA) and Guadalajara. We utilise two sources. First,
we compiled data from death certificates, including information on day of death,
gender of the child, municipality of residence, age of the child at death and cause of
death. Second, to compute mortality rates, we gained access to the birth certificate
registry, which contains information on date of birth and municipality of residence.

We then computed weekly, municipality-level neonatal mortality rates (those that are
28 days of age and younger) and infant mortality rates (those that are one year old and
younger). To do so, for each week-municipality observation, we calculate the number
of births in the last 28 days and in the last year.15 Mortality rates are then calculated by
dividing the total number of deaths in each week-municipality by the total number of
live births in the corresponding age group and then multiplying by 100,000. Thus, our
coefficients can be interpreted as the number of deaths in a week per 100,000 children
born alive in the respective age cohort.

1.3.2. Pollution
Pollution data are notoriously absent in many developing countries. When available,
they are often only cross-sectional, or of mixed quality. In this article, we are able to
take advantage of a relatively rich, panel data set that is available for Mexico City,
namely the Automatic Network of Atmospheric Monitoring (RAMA). Measures are
available for particulate matter under 10 micrometres (PM10), sulphur dioxide (SO2),
carbon monoxide (CO) and ozone (O3). These data are considered to be of high
quality and, as Davis (2008) points out, ‘[t]hese measures are widely used in scientific
publications’ (p. 41). However, it is important to note that they are drawn from
relatively few stations: PM10 is available for 10 stations from 1997 to 1999, and from 16
stations starting in 2000, SO2 is drawn from 26 stations, CO is drawn from 24 stations
and O3 is drawn from 21 stations.

From these data, we construct weekly measures of pollution for each of the 56
municipalities in Mexico City using the inverse of the distance to nearby stations as
weights (see Currie and Neidell, (2005) for description of the methodology). Out of
the 56 municipalities in Mexico City for which we have infant mortality data, we
include the 48 that are within 15 kilometres of a station. There is a trade-off between
constraining the sample to municipalities that are even closer to at least one station for
greater precision of the pollution measure and increasing the distance cut-off to
include more municipalities. As shown in online Appendix Table A3, the key infant
mortality results are fairly robust to alternative definitions of this cutoff.

We use the hourly measures of pollution to calculate the maximum daily 8-hour
average for CO and average this over the week, the maximum daily 24-hour average for
PM10 and average this over the week, and then weekly averages for SO2 and for O3.

16

15 Since 0.03% of the births certificates have missing month and day of birth, we adjust weekly estimates of
births by dividing un-dated births equally among all weeks of the year.

16 We use these measures for ease of comparison with Currie and Neidell (2005) and Knittel et al. (2011).
However, our results are robust to alternative measures of pollution.
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1.3.3. Thermal inversions
Thermal inversions are recorded by the Meteorological Unit of the local Ministry of
Environment. They conduct screenings almost every day, which consist of measuring
hourly temperatures at different altitudes using an aerostatic balloon.17 The existence
of an inversion is determined upon finding non-monotonic temperature gradients.
Records are kept on the time and temperature of the inversion rupture, so that one
can also compute the number of hours an inversion lasted, as well as the thickness of its
layer. We aggregate the data to the weekly level by computing the number of thermal
inversions in a given week.

1.3.4. Temperature and weather
We obtained temperature and weather variables as additional controls in our
specification. Hourly temperature measures are available from 24 stations in the
RAMA network, and daily level measures of humidity, precipitation and cloud
measures are available daily from 219 local weather stations. Using the same
methodology to compute weekly, municipality-level measures of pollution, we use this
information to compute the temperature and weather controls.

1.4. Data Description

We describe the data in Table 1. In panels (a) and (b), we provide information on
neonatal mortality rates (for children that are 28 days and younger) and infant
mortality rates (those that are one year and younger) respectively. In addition to the
means for the weekly measures used in the regression analysis (column (1)), we
additionally include the mean across municipalities in a given year per 100,000 births
for ease of comparison with the US Figures (column (4)).18 Over the period of study,
yearly mortality rates are more than double in Mexico City than in the US: the neonatal
mortality rate is 1,183, while the US rate is 460. Similarly, the infant mortality rate in
Mexico City was 1,986, while the comparable US Figure was 698.

Note that we also providemortality estimates by cause of death.We can test whether the
effect of pollutiononmortality is drivenbydeaths thatweexpect tobe related topollution.
We define this comparison in two ways. First, we can compare all internal deaths with all
external deaths (i.e. accident, homicides). This is a very strict definition, in that it assumes
that pollution affects all internal deaths, including, for example those from digestive
diseases, which may or may not be affected by pollution. Moreover, there are relatively
fewer deaths from external sources (61.37 per 100,000), with relatively less variation, and
so we may not capture an effect with the same sample size due to power concerns.

17 Of the 3,652 days within our sample period, we have data on whether an inversion occurred for 95% of
these days. We drop the weeks in which we are missing inversion data.

18 Note that the weekly measure for infant deaths in column (1) appears smaller than that of neonatal
mortality, despite the fact that the latter also includes neonatal deaths. The difference in magnitudes is
mainly due to scaling: neonatal mortality rates are computed by dividing the number of deaths occurred in a
single week within the 28-day cohort by the number of live births corresponding to that cohort. Hence, the
denominator for the neonatal mortality figure is necessarily smaller than the denominator for the infant
mortality figure. Column (4) shows mortality rates on a yearly basis. This column is computed by multiplying
column (1) by (4) (or 52/13) in the case of neonatal mortality and by 12 in the case of infant mortality.
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Therefore, we also compare diseases that are more likely to be directly attributed to
pollution (i.e. respiratory and cardiovascular disease) versus those that are less likely to be
directly attributed to pollution (digestive, congenital, accidents, homicides etc.).

In panel (c), we provide means for particulate matter of 10 lm or less (PM10),
carbon monoxide (CO), ozone (O3), and sulphur dioxide (SO2), as well as summary
information on inversions.19 Despite falling pollution levels in Mexico City, the average
is still quite high. For example, the mean level of PM10 is about 67 lm as compared to
39.45 lm observed in California, as documented by Currie and Neidell (2005).
Inversions are fairly frequent: on average, there are 1.7 inversions in a municipality-
week. Conditional on an inversion occurring that week, there is an average of 2.77
inversions in a municipality-week.

Table 1

Sample Statistics

Mean of deaths in a
week/municipality
per 100,000 births

Standard
deviation Observations

Mean of
deaths in a

year/municipality
per 100,000 births

(1) (2) (3) (4)

Panel (a): Neonatal mortality rates (28 days and younger)
All causes 295.83 520.49 24,691 1,183.34
Non-external causes 287.73 513.74 24,691 1,150.93
External causes 3.27 49.09 24,691 13.07
Respiratory causes 7.85 96.17 24,691 31.39
Non-respiratory causes 283.15 507.73 24,691 1,132.61

Panel (b): Infant mortality rates (one year and younger)
All causes 38.21 56.93 24,691 1,986.82
Non-external causes 36.52 55.14 24,691 1,898.85
External causes 1.18 9.61 24,691 61.37
Respiratory causes 6.91 29.35 24,691 359.14
Non-respiratory causes 30.79 46.65 24,691 1,601.08

Panel (c): Pollution and thermal inversions
Particulate matter 24-hour PM10 66.94 23.85 18,017
Carbon monoxide 8-hour avg (CO) 2,707.56 797.70 18,167
Sulphur dioxide avg (SO2) 13.30 5.21 18,173
Ozone avg (O3) 32.33 7.47 18,167
Number of inversions in a week 1.68 1.88 18,538
Number of inversions in a week,
conditional on an inversion

2.77 1.68 11,257

Notes. This Table provides descriptive statistics for the key variables in the regression analysis. Panel (a)
provides information on neonatal mortality, while panel (b) provides information on infant mortality. Panel
(c) reports information on each pollutant and the thermal inversions. External cause is defined as deaths
from accidents and homicides; internal cause encompasses all causes not including accidents or homicides.
Respiratory causes (RC) includes respiratory and cardiovascular disease, while non-respiratory includes
digestive, congenital, accidents, homicides etc. Mortality data come from death certificates and were provided
by Secretar�ıa de Salud P�ublica. Pollution data come from the Sistema de Monitoreo Atmosferico de la Ciudad
de Mexico (www.sma.df.gob.mx). Inversion data were provided by the Meteorological Unit at the Secretar�ıa
de Medio Ambiente.

19 Given the presence of outliers in the data, we trim the top and bottom 1% of values. The primary results
remain largely unchanged if we do not trim the outliers as shown in columns (5) and (6) of online Appendix
Table A6.
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Finally, we describe the evolution of pollution and infant mortality over time. In
Figure 4, we graph average weekly neonatal (panel (a)) and infant mortality rates (panel
(b)) against each of the four air pollutants over time. Mexico City has been successful in
reducing pollution city-wide over the 1997–2006 time period, with all four air pollutants
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Fig. 4. Mortality and Pollution Trends in MCMA. (a) Pollution and Neonatal Mortality. (b) Pollution and
Infant Mortality

Notes. This Figure plots the average annual pollution concentrations over time for the maximum
daily 24-hour average of PM10, the maximum daily 8-hour average of CO, the average
concentration of SO2 and the average concentration of O3 (solid lines). It also plots average
weekly neonatal (panel (a)) and infant mortality rates (panel (b)) for Mexico City (dashed lines).
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falling sharply over this period (Molina and Molina, 2002). As the Figures illustrate,
mortality rates are also falling and, in some cases, the rates closely track pollution changes.

2. Results

2.1. First Stage Estimates

We begin by examining the relationship between the occurrence of an inversion and
each of the four pollutants (PM10, CO, O3 and SO2), which comprises the first stage of
our instrumental variables strategy. In Figure 5, we graph the average pollutant level by
number of inversions. As the Figure illustrates, we observe a strong, and fairly linear,
relationship between the number of inversions in the last week and PM10 and CO
levels. In contrast, there does not appear to be an obvious relationship between the
number of inversions and either O3 or SO2.

We provide the corresponding regression analysis in Table 2. Specifically, we present
coefficient estimates from (3). As suggested by the Figure, inversions have a large and
significant effect on PM10 and CO. One additional inversion in the last week results in a
3 lg/m3, or 3.4%, increase in PM10 (column (1)). Similarly, one additional inversion
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results in a 170 ppb, or 5.6%, increase in CO (column (2)). The effects on PM10 and
CO are both significant at the 1% level and both would pass a weak instruments test.
We find less precisely estimated effects of thermal inversions on SO2 and O3 (columns
(3) and (4)); with F-statistics of 3.146 and 6.060 respectively neither of which pass a
weak instruments test. These overall findings are consistent with the theoretical
predictions discussed in Section 1 that we would expect the largest effects on PM10 and
CO.

2.2. Causal Estimates of Pollution on Infant Mortality and Health

In columns (1) and (2) of Table 3, we provide the coefficient estimates of the effect of
each pollutant on neonatal and infant mortality respectively from estimating (2) (the
fixed effects model). Note that we additionally include municipality-specific week
trends in this model.20 In columns (3) and (4), we provide our IV estimates for the
individual effects of PM10 and CO on mortality; here, we report the coefficient
estimates from (4).21 As there is no first stage result for SO2 or O3, we do not estimate
an IV estimate for these pollutants.

Table 2

The Effect of Thermal Inversions on Pollution (First Stage)

PM10 CO 8-hour SO2 O3

(1) (2) (3) (4)

Inversions 3.311*** 169.884*** �0.257* 0.424**
(0.503) (13.451) (0.145) (0.172)

F test 43.37 159.5 3.146 6.060
Mean of outcome variable 57.67 2,707.56 13.30 32.33
Two-month of year 9 municipality FE X X X X
Municipality fixed effects X X X X
Weather controls X X X X
Municipality-week trends X X X X
N 18,017 18,167 18,173 18,167

Notes. This table provides the coefficient estimates of the effect of the number of thermal inversions per week
on pollution concentrations, controlling for two-month-of-the-year by municipality fixed effects, municipality
fixed effects, municipality-specific week trends, a fourth degree polynomial in average temperature during
the week, a third degree polynomial in maximum and minimum temperatures during the week, a second
degree polynomial in precipitation and cloud and humidity measures. Standard errors (listed below each
estimate in parenthesis) are clustered at the week level. Statistical significance is denoted by: ***p < 0.01,
**p < 0.05, *p < 0.10.

20 As online Appendix Table A4 shows, the results are qualitatively smaller if we drop the municipality-
week trends (columns (1) and (2)) and look similar if include fewer temperature controls (columns (3) and
(4)). We find much smaller effects with Currie and Neidell (2005)’s specification (columns (5) and (6)).

21 Online Appendix Table A5 explores the robustness of the IV estimates to different control variables. As
shown in columns (1) and (2), the effects on neonatal and infant mortality are slightly larger in magnitude if
we do not include the municipality-week trends. Relaxing the temperature controls (columns (3) and (4))
also leads to slightly larger estimates for infant mortality but the effects are still not significant for neonatal
mortality. Including a more flexible time trend (columns (5) and (6)) yields similar results.
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Using a fixed effects strategy, we find an effect of CO and PM10 on mortality
(columns (1) and (2)). As compared to a pure cross-sectional analysis, the fixed effects
estimates, for the most part, tend to be smaller in magnitude, which is consistent with
classical measurement error.

Instead, we turn to our instrumental variables strategy. Here, we find large effects of
pollution on infant mortality but smaller and non-significant effects on neonatal
mortality. In the case of infant mortality a 1 lg/m3 increase in PM10 over the week
leads to 0.23 deaths per 100,000 births, while a 1 ppb increase in CO leads to 0.0046
deaths.22 This implies that a 1% increase in PM10 over a year leads to a 0.40% increase
in infant mortality, while a 1% increase in CO results in a 0.33% increase. These
findings are consistent with the fact that deaths by respiratory diseases, which are likely
to be affected by pollution exposure, are a higher share of total deaths for infants than
for those under 28 days and may reflect underlying differences in ambient air
exposure (i.e. infants may be more likely to be taken outside during the day than
newborns).

Next, we explore whether any residual seasonal variation – that is after controlling
for bimonthly 9 municipality fixed effects, temperature and weather – is driving our
results. First, we can control for mortality in the second and third largest cities of
Mexico, Guadalajara and Monterrey, which share similar weather patterns as Mexico
City but do not experience inversions. Including the mortality rate in Guadalajara and
Monterrey as controls (columns (5) and (6) of Table 3) does not qualitatively affect
the results. Second, we can confirm whether the effect of pollution is similar across
seasons, particularly whether it differs across the winter and summer months. Online
Appendix Table A6 shows these results.23 Note that we observe a significant first stage
for both the summer and winter months.24 On net, the effects on infant mortality do
not appear to be significantly different across the winter and summer months. Thus,
taken together, we believe that seasonality does not drive our findings.25

Another concern is that models that estimate the effect of pollution on infant death
within a short time frame, such as week, overstate the effect. This bias would occur if
pollution simply accelerates infant deaths by a short time period rather than causing
additional deaths (‘harvesting’). We do not find evidence of this. We can see this in two
ways. First, the effect on neonatal deaths is much smaller in magnitude than infant

22 Note that Table 3 reports effects of CO in terms of neonatal/infant deaths associated with one part per
billion, which corresponds to an increase in CO concentration of 0.037%.

23 For completeness, we show two possible definitions of seasons. Specifically, we can define summer from
week 13 to week 42 (columns (1) and (2)) or from week 14 to 43 (columns (3) and (4)). The results are
qualitatively similar across the two definitions.

24 The Angrist-Pischke F-statistics are above the Stock-Yogo 10% threshold for weak instruments.
25 Online Appendix Table A7 explores the effects of non-linearity. Using information on the mean and

variance from Currie and Neidell (2005), we define a spline at one standard deviation above their mean
(39.45 µg/m3 for PM10, and 1998 ppb for CO). This results in two endogenous variables per regression, so we
use indicator variables denoting 1, 2–3 and 4–7 inversions per week as the instrument set. We find suggestive
evidence of non-linearities in the CO effect (Table A7, panel (b)). Importantly, the Angrist-Pischke F-statistics
suggest we can separately identify variation in CO above and beyond the 3,167 ppb threshold by breaking
thermal inversions into indicator variables denoting 1, 2–3 and 4–7 inversions per week. We then find that
the marginal effect of CO is close to zero when CO concentrations are below 3,167 ppb and 0.0092 when
concentrations are above this threshold (significant at the 5% level). However, we cannot reject that the
coefficients are the same at conventional levels (the p-value for the test of equality of the slopes is 0.256).
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deaths. Due to the scaling, we need to multiply the infant mortality estimates to
compare the neonatal and infant mortality estimates. When doing this, it becomes
apparent that the effects on neonatal mortality are not only insignificant but also 50%
smaller in magnitude. The fact that we find smaller effects of air pollution on children
below the age of 28 days suggests that air pollution is not accelerating the death of
already vulnerable children but is causing deaths of children with otherwise long life
expectancies. Second, in online Appendix Tables A8 and A9, we present the results of
our analysis when we aggregate the data to the month level rather than at the week
level. If harvesting is an issue of concern with our estimates, we would expect much
smaller effects when using data aggregated at the month level. However, this is not the
case.26

It is important to note that our IV results are very robust to changes in the model
specification, providing a high level of confidence in this strategy. In online
Appendix Table A10, we first test whether our results are driven by changes in the
denominator of the left-hand side variable, that is, the number of births. This would
be the case if pollution shocks have an impact on the number of live births in the
current week, which are included in the denominator. We perform this check by
estimating our IV model with the log of deaths as a dependent variable and the log
of births as an additional control variable. The results of this specification, reported
in columns (1) and (2), can be compared with our main results divided by
the average mortality rate. We find that the results of the log specification for
infant mortality are slightly smaller but not significantly different than our main
estimates, and they are still significant at the 5% level (the effects on neonatal
remains insignificant). Thus, it is unlikely that the results are driven by changes in
births.27

In Table 4, we replicate the IV analysis for mortality that results from different
causes. This can be viewed as a placebo test: if we find that our pollution measure is
resulting in deaths that are unlikely to be related to pollution, we would conclude that
our instrument might be directly linked to unobserved socio-demographic determi-
nants of mortality. We can define pollutant-related deaths in two ways. First, we
compare deaths from all types of internal sources and those from purely external
sources. We find no observable effect on either internal or external effects for neonatal
(columns (1) and (2)). The effect of pollution on infant mortality appears to be driven
by internal deaths (column (6)); there is no observable effect on external deaths for
infants. However, mortality from external sources is rare compared to that from
internal sources, meaning it would be more difficult to detect an effect on external
deaths if there indeed is one. Moreover, it is possible that external deaths are simply

26 To make the magnitudes of infant mortality coefficients comparable across online Appendix Table A9
and our main results (Table 3), it is useful to compute the yearly mortality effects associated with both (i.e.
multiplying coefficients in Table 3 (column (2)) by 52 and the coefficients in online Appendix Table A9
(column (2)) by 12). The coefficients from monthly aggregated data appear about three times as large as the
coefficients from weekly aggregated data. Note, however, that only the coefficients from the CO IV regression
are reliable since the first stage for PM10 is lost when aggregating data at such a coarse level (see online
Appendix Table A8).

27 Note that in columns (3) and (4) of online Appendix Table A12, we also show the estimates had we not
dropped the top and bottom 1% of values in pollution and show that the results are not sensitive to their
inclusion.

© 2015 Royal Economic Society.

274 TH E E CONOM I C J O U RN A L [ M A R C H



T
ab

le
4

IV
E
ff
ec
t
of

P
ol
lu
ti
on

on
M
or
ta
li
ty
,
by

C
au

se
of

D
ea
th

N
eo

n
at
al

In
fa
n
t

E
xt
er
n
al

In
te
rn
al

N
o
n
-R
C

R
C

E
xt
er
n
al

In
te
rn
al

N
o
n
-R
C

R
C

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

P
ar
ti
cu

la
te

m
at
te
r

24
-h
o
u
r
av
g
(P

M
1
0
)

�0
.0
28

3
0.
42

63
�0

.0
44

8
0.
44

28
**
*

0.
01

05
0.
19

02
**
*

0.
07

73
0.
12

35
**
*

(0
.0
54

1)
(0
.4
74

2)
(0
.4
52

1)
(0
.0
96

7)
(0
.0
08

8)
(0
.0
70

1)
(0
.0
48

6)
(0
.0
34

1)
C
ar
b
o
n
m
o
n
o
xi
d
e

8-
h
o
u
r
av
g
(C

O
)

�0
.0
00

8
0.
00

85
�0

.0
01

6
0.
00

93
**
*

0.
00

02
0.
00

37
**
*

0.
00

14
0.
00

25
**
*

(0
.0
01

1)
(0
.0
10

2)
(0
.0
09

6)
(0
.0
02

1)
(0
.0
00

2)
(0
.0
01

4)
(0
.0
01

0)
(0
.0
00

7)
M
ea
n
o
f
o
u
tc
o
m
e
va
ri
ab

le
3.
27

28
7.
73

28
3.
15

7.
85

1.
18

36
.5
2

30
.7
9

6.
91

N
ot
es
.
T
h
is

T
ab

le
p
re
se
n
ts

th
e
co

ef
fi
ci
en

t
es
ti
m
at
es

fr
o
m

th
e
IV

es
ti
m
at
io
n
o
f
ea
ch

p
o
ll
u
ta
n
t
o
n
m
o
rt
al
it
y,

b
y
ca
u
se

o
f
d
ea
th
.
E
ac
h
co

ef
fi
ci
en

t
co

rr
es
p
o
n
d
s
to

a
se
p
ar
at
e
re
gr
es
si
o
n
.
E
xt
er
n
al

ca
u
se

is
d
efi

n
ed

as
d
ea
th
s
fr
o
m

ac
ci
d
en

ts
an

d
h
o
m
ic
id
es
;
in
te
rn
al

ca
u
se

en
co

m
p
as
se
s
al
l
ca
u
se
s
n
o
t
in
cl
u
d
in
g
ac
ci
d
en

ts
o
r
h
o
m
ic
id
es
.

R
es
p
ir
at
o
ry

ca
u
se
s
(R

C
)
in
cl
u
d
e
re
sp
ir
at
o
ry

an
d
ca
rd
io
va
sc
u
la
r
d
is
ea
se
,
w
h
il
e
n
o
n
-r
es
p
ir
at
o
ry

(N
o
n
-R
C
)
in
cl
u
d
es

d
ig
es
ti
ve
,
co

n
ge

n
it
al
,
ac
ci
d
en

ts
,
h
o
m
ic
id
es

et
c.
A
ll

re
gr
es
si
o
n
s
co

n
tr
o
l
fo
r
tw
o
-m

o
n
th
-o
f-
th
e-
ye
ar

b
y
m
u
n
ic
ip
al
it
y
fi
xe

d
ef
fe
ct
s,

m
u
n
ic
ip
al
it
y
fi
xe

d
ef
fe
ct
s,

m
u
n
ic
ip
al
it
y-
w
ee
k
tr
en

d
s,

a
fo
u
rt
h

d
eg

re
e
p
o
ly
n
o
m
ia
l
in

av
er
ag
e
te
m
p
er
at
u
re

d
u
ri
n
g
th
e
w
ee

k,
a
th
ir
d

d
eg

re
e
p
o
ly
n
o
m
ia
l
in

m
ax
im

u
m

an
d

m
in
im

u
m

te
m
p
er
at
u
re
s
d
u
ri
n
g
th
e
w
ee

k,
a
se
co

n
d

d
eg

re
e
p
o
ly
n
o
m
ia
l
in

p
re
ci
p
it
at
io
n
an

d
cl
o
u
d
an

d
h
u
m
id
it
y
m
ea
su
re
s.
T
h
e
n
u
m
b
er

o
f
th
er
m
al
in
ve
rs
io
n
s
p
er

w
ee

k
is
th
e
ex

cl
u
d
ed

in
st
ru
m
en

t.
St
an

d
ar
d
er
ro
rs
(l
is
te
d
b
el
o
w
ea
ch

es
ti
m
at
e

in
p
ar
en

th
es
is
)
ar
e
cl
u
st
er
ed

at
th
e
w
ee

k
le
ve
l.
St
at
is
ti
ca
l
si
gn

ifi
ca
n
ce

is
d
en

o
te
d
b
y:

**
*p

<
0.
01

,
**

p
<
0.
05

,
*p

<
0.
10

.

© 2015 Royal Economic Society.

2016] P O L LU T I ON AN D I N F A N T MOR T A L I T Y I N M E X I C O 275



accidental and/or immediate, and thus are altogether uncorrelated with income or
health care quality.

Therefore, we can also classify deaths by those that are more likely to be
attributed to pollution (i.e. respiratory and cardiovascular disease) versus those from
sources that are less likely (digestive, congenital, accidents, homicides etc.). This is
not a perfect separation, as children who are weakened by high pollution may be
more likely to pass away from other sources (such as digestive disorders) and causes
of death may be imperfectly diagnosed. However, we should still expect the effect
on respiratory diseases to be relatively large if pollution is driving much of the
effect, and not other socio-demographic characteristics. Our results suggest that
most of the deaths related to pollution are linked to respiratory and cardiovascular
causes: we find no effect on non-respiratory deaths for either neonatal (column
(3)) or infant (column (7)) deaths. Importantly, if we focus on deaths from
respiratory and cardiovascular disease, we find large effects of pollution on both
infant (column (8)) and neonatal (column (4)) deaths. The fact that we find that
the effect of pollution on mortality is driven mainly by respiratory causes implies
that our instrument is capturing exogenous variation in pollution and not just
trends in socio-economic characteristics.

Finally, in all the IV specifications above, the effect for any individual pollutant may
be capturing its own effect, as well as the effect of the other pollutant affected by
thermal inversions (either PM10 or CO). This is particularly problematic given that we
have used one main instrument to identify the effect of each pollutant. In order to
account properly for the total amount of deaths attributed to pollution fluctuations, we
adopt two different approaches. First, we include all pollutants affected by thermal
inversions in the same specification, so that the estimated effect of each pollutant is
purged of potential bias from the others. This results in multiple endogenous variables
and, therefore, we need to identify multiple instruments in order to estimate the causal
effect of each pollutant, conditional on the others. Second, we construct a pollution
index using the principal components method in order to generate a single
endogenous variable that captures information on fluctuations of both PM10 and CO.

To generate multiple instruments, we exploit the fact that the effect of the inversions
on different pollutants may differ based on the altitude of the municipality and the
thickness of the inversion. Based on this, we create three instruments: the number of
inversions, the number of inversions interacted with altitude and the thickness of
inversion interacted with altitude. As online Appendix Table A11 illustrates, PM10

concentrations are lower at higher altitudes, presumably because higher areas are
likely to be above the thermal inversion layer. However, altitude does not seem to
matter as much for CO concentrations, unless the thermal inversion layer is thick.
Thickness of the thermal inversion induces higher concentrations of CO at higher
altitudes. The Angrist-Pischke F-statistic for both estimated equations is above the
Stock-Yogo 10% critical value for single endogenous regressors, which suggests that our
instrument combination induces at least some independent variation in both
pollutants.

The IV estimates of this multiple pollutant model are presented in panel (a) of
Table 5; note that given that we have multiple instruments, we estimate the model
using LIML. We do not observe a significant effect of either pollutant on neonatal
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mortality, and the two pollutant variables are jointly insignificant (column (1)). While
each pollutant is not an individually significant predictor for infant mortality, the two
pollutants are jointly significant in predicting infant mortality at the 10% level (column
(2)). In terms of magnitude, we find that given the overall decline in pollution in
Mexico City from 1997 to 2006 (weighted by births), our estimates would predict a
change in the infant mortality rate that is due to pollution of 325 deaths per 100,000
(columns (3) and (4)).

Panel (b) of Table 5 shows the IV results where a single pollution index appears as
the unique endogenous variable. The units of the index can be interpreted in terms of
standard deviations. For reference, the average value of the index is 1.24 in 1997 and
�0.68 in 2006. Note that when we collapse the two pollutants into a single variable, the
effect of pollution is statistically significant. This is not surprising given that the index
overcomes the identification problem posed by the high collinearity between PM10 and
CO (the correlation is 0.48). Note, that the drop in pollution measured by the units of
the index results in a very similar reduction in deaths per year as the reduction implied
by the separate measures of the two pollutants: 308 compared to 325 deaths per
100,000.

Table 5

Multiple Pollutant Models

Neonatal Infant

Change in
pollution between
1997 and 2006

Change in infant
death rate per year

between 1997 and 2006

(1) (2) (3) (4)

Panel (a): Multipollutant model
Particulate matter 24-hour
avg (PM10)

�0.0598 0.1335 �21.87 �151.8
(1.9501) (0.2176)

Carbon monoxide 8-hour
avg (CO)

0.0185 0.0021 �1,581.73 �172.7
(0.0410) (0.0046)

Chi-squared stat joint
significance test

1.682 9.834 �324.5

p-value 0.431 0.00732

Panel (b): Single pollution index
Pollution index 12.5322 3.4382*** �1.72 �307.8

(9.8438) (1.1470)

Notes. In panel (a), each column in this Table presents the results of a single specification that includes CO
and PM10 simultaneously. We present the results of an IV estimation of the multivariate pollution model,
where inversions, inversions 9 altitude and inversions 9 thickness are instruments for CO and PM10 (the
first stage is reported in online Appendix Table A10). Coefficients can be interpreted as the effect of each
pollutant, conditional on the other pollutant. In panel (b), we use the principal components method to
construct an index of pollution. This index summarises information on both PM10 and CO. Because this
model has a single endogenous variable, we use the number of thermal inversions per week as a single
instrument. All regressions control for two-month-of-the-year by municipality fixed effects, municipality fixed
effects, municipality-week trends, a fourth degree polynomial in average temperature during the week, a
third degree polynomial in maximum and minimum temperatures during the week, a second degree
polynomial in precipitation and cloud and humidity measures. Statistical significance is denoted by:
***p < 0.01, **p < 0.05, *p < 0.10. For ease of interpretation, in columns (3) and (4), we calculate the
change in infant deaths per year that can be attributed to the change in pollution in Mexico City between
1997 and 2006 (assuming 282,000 births per year).
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3. Discussion

One of the main goals of this study is to understand better whether pollution estimates
derived from the US context are externally valid to the developing world. If we believe
that there is a non-linearity in the relationship between pollution and infant mortality,
or that the costs of avoidance behaviour differ between the two settings then estimates
derived from US settings may not be valid in conducting cost–benefit analysis of
environmental regulations in the developing world. As we discussed earlier, the
direction of the bias is ambiguous and, therefore, it is hard to benchmark whether we
would be over or under-estimating the benefits.

Thus, we compare our estimates to those from Chay and Greenstone (2003), Currie
and Neidell (2005), Currie et al. (2009) and Knittel et al. (2011) in Table 6. Panel (a)
reports our estimates, while panel (b) provides the comparable results for the papers in
the US setting. For ease of interpretation, we provide the mean level of infant mortality
(column (1)), the mean value of each pollutant (columns (2) and (5)), the point
estimates (columns (3) and (6)) and the elasticity (columns (4) and (7)). Note several
features regarding the Table. First, we use the estimates from the single pollutantmodels
because our subset of pollutants differs from these papers. Even though the models are
not fully comparable, we replicate this Table using the multiple pollutant models in
online Appendix Table A12 for completeness. Second, note that Chay and Greenstone
study total suspended particulates (TSP) and not PM10. For comparability to our
estimates, we follow Knittel et al. and convert the TSP estimates using the following
formula: PM10 = 0.55 TSP. Third, Chay and Greenstone and Knittel et al. study internal
deaths rather than all deaths, so we additionally report the estimates for internal deaths
for our sample. Finally, we put all estimates at the year level for ease of comparison.

Table 6

Comparison with Literature in US Setting (Sample for One Year Olds)

CO Particulate matter

Infant
mortality

rate
Mean
level

Effect
size (year) Elasticity

Mean
level

Effect
size (year) Elasticity

(1) (2) (3) (4) (5) (6) (7)

Panel (a): Mexico City data
Infant mortality 1,986.82 2.71 239.2*** 0.326 66.94 12.3188*** 0.405
Infant mortality-internal 1,898.85 2.71 192.4*** 0.274 66.94 9.2196*** 0.348

Panel (b): Estimates from US setting
Currie and Neidell (2005) 391 2.00 16.501** 0.084 39.45 0.013 0.001
Currie et al. (2009) 688 1.58 17.6*** 0.040 29.60 �0.189 �0.008
Chay and Greenstone (2003) 1,179 35.33 9.47** 0.284
Knittel et al. (2011) 280 1.01 40.56 0.146 28.94 17.68** 1.827

Notes. In this Table, we compare our primary estimates with estimates derived from the US context. We
convert Chay and Greenstone (2003) from total suspended particulars to particulate matter for ease of
comparison. We also provide the elasticity of the infant mortality rate to pollution (columns (4) and (7)).
Given that Currie et al. (2009) does not have a directly comparable group, we report their estimates for the
zero to two week age group.
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Wefind that a 1 ppm increase inCOover a year leads to 239.2 infant deaths per 100,000
births (panel (a)). This implies that a 1% increase in CO over the year leads to a 0.326%
increase in the infant mortality rate. We find a much larger effect on the infant mortality
rate than either Currie and Neidell (2005), Currie et al. (2009) or Knittel et al. (2011)
(column (3)). The estimated elasticity using theMexicoCity data is larger thanCurrie and
Neidell, who find an elasticity of 0.084, or Currie et al., who find an elasticity of 0.04. Our
estimates are larger but not qualitatively different from Knittel et al. (0.146); however, it is
important to note that Knittel et al. cannot statistically distinguish their estimate from zero.

While we again point out that we are cautious about our non-linear estimation, they
suggest that the effect of particulates is linear. Thus, we expect that our estimates for
PM10 should be similar to those from the US. Despite the fact that the overall level of
particulates is roughly half (66.94 in Mexico City versus 35.33 in the US), both our
point estimates for internal deaths and elasticity for PM10 are fairly similar to Chay and
Greenstone (2003) (columns (6) and (7)). However, our estimates are much smaller
than Knittel et al., who find that a one unit increase in PM10 in the year leads to 17.68
deaths per 100,000 births, or that a 1% increase in PM10 results in a 1.82% increase in
the infant mortality rate.

4. Conclusion

There is a growing concern about the effects of pollutiononhealth in thedevelopingworld.
Especially in their urban areas, high population densities and low quality health services are
collidingwithhigh levels ofharmfulpollutant concentrations.This article sheds lighton the
importance of air quality improvements in the effort to curtail mortality rates.

Using a novel instrumental variables strategy, we find statistically significant effects of
pollution on infant mortality in Mexico City. Our estimates imply that a 1 ppb increase
in CO over a week leads to a 0.0046 per 100,000 births increase in the infant mortality
rate, while a 1 lg/m3 increase in PM10 leads to a 0.23 per 100,000 births increase in
their mortality rate. This implies that a 1% increase in PM10 over a year leads to a
0.40% increase in infant mortality, while a 1% increase in CO results in a 0.33%
increase. Our results on CO are generally larger than those estimated with data from
the US, while we find comparable results for PM10 despite the fact that pollution levels
are more than double in Mexico City. Our findings illustrate that there may be
differences in estimates for developed and developing countries, suggesting using
estimates from the US setting in benefit–cost calculations may understate the benefits
from greater environmental regulation in developing countries.
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